Search results for "stirred vessel"

showing 10 items of 24 documents

Mixing dynamics in uncovered unbaffled stirred tanks

2014

Abstract The present work is aimed at providing experimental information on mixing rates in an unbaffled vessel under free surface vortexing conditions. The planar laser induced fluorescence (PLIF) technique was used for measuring the dispersion dynamics of a passive tracer over a vertical section of the vessel. In agreement with the quite scant literature information available for these systems, results confirm the existence of two well defined, partially segregated, zones that give rise to a double mixing dynamics behavior. A suitable mixing time definition is proposed and applied to a number of experimental runs with different stirrer geometries and agitation speeds. Results confirm that…

Engineering drawingWork (thermodynamics)Materials sciencePlane (geometry)Settore ING-IND/25 - Impianti ChimiciMIXINGGeneral Chemical EngineeringUnbaffledGeneral ChemistryMechanicsIndustrial and Manufacturing EngineeringVortexImpellerStirred tankPlanar laser-induced fluorescencePLIFFree surfaceEnvironmental ChemistryUNBAFFLED STIRRED VESSELSMIXING TIMEDispersion (water waves)Mixing (physics)Chemical Engineering Journal
researchProduct

A NOVEL TECHNIQUE FOR MEASURING LOCAL BUBBLE SIZE DISTRIBUTION

2009

A novel experimental technique for measuring the local gas hold-up and the statistical distribution of local bubble size, is proposed. The technique is based on laser sheet illumination of the gas-liquid dispersion and synchronized camera, i.e. on equipment typically available in PIV set-ups. The liquid phase is made fluorescent by a suitable dye, and a band-pass optical filter is placed in front of the camera optics, in order to allow only fluoresced light to reach the camera CCD. In this way bubbles intercepted by the laser sheet are clearly identified thanks to the neat shade resulting in the images. This allows excluding from subsequent analysis all bubbles visible in the images but not…

Settore ING-IND/25 - Impianti Chimicigas-liquid systems stirred vessels image analysis bubble size distribution
researchProduct

CFD prediction of solid particle distribution in baffled stirred vessels under partial to complete suspension conditions

2013

Solid-liquid mixing within tanks agitated by stirrers can be easily encountered in many industrial processes. It is common to find an industrial tank operating at an impeller speed N lower than the minimum agitation speed for the suspension of solid particles: under such conditions the distribution of solid-particles is very far from being homogeneous and very significant concentration gradients exist. The present work evaluates the capability of a Computational Fluid Dynamics (CFD) model to reliably predict the particle distribution throughout the tank under either partial or complete suspension conditions. A flat bottomed baffled tank stirred by a Rushton turbine was investigated. Both tr…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi Chimicilcsh:Computer engineering. Computer hardwareSettore ING-IND/25 - Impianti Chimicilcsh:TP155-156lcsh:TK7885-7895lcsh:Chemical engineeringMixing Solid liquid suspensions CFDSettore ING-IND/19 - Impianti NucleariComputational Fluid Dynamics Baffled Stirred Vessel Solid Liquid Suspension
researchProduct

NUMERICAL SIMULATION OF SEDIMENT RESUSPENSION IN MECHANICALLY STIRRED VESSEL

2008

Numerical simulation CFD particle suspension stirred vessels
researchProduct

On the Reduction of Power Consumption in Vortexing Unbaffled Bioslurry Reactors

2020

Bioremediation of polluted soils via bioslurry reactors is an interesting option among those available nowadays, especially when recalcitrant pollutants are present. Vortexing unbaffled stirred tanks may be a valuable choice to this purpose as they were recently found to be more efficient than baffled vessels for solid suspension processes where mixing time is not a controlling factor. When operated at sufficiently high agitation speeds, the central vortex bottom reaches the impeller and air bubbles start to be distributed throughout the system, thus avoiding any sparger and related clogging issues. In the present work, a vortexing unbaffled stirred tank with solid loadings ranging from 2.5…

Polluted soilsSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSettore ING-IND/25 - Impianti ChimiciGeneral Chemical EngineeringSCALE-UP02 engineering and technologyIndustrial and Manufacturing EngineeringReduction (complexity)AGITATED VESSELBioremediation020401 chemical engineeringPARTICLE SUSPENSIONMASS-TRANSFER RATES0204 chemical engineeringPollutantMIXING CHARACTERISTICSBIO-REACTORSGeneral Chemistry021001 nanoscience & nanotechnologyPulp and paper industrySOILSOLID-LIQUID SUSPENSIONSPower consumptionSTIRRED VESSELSEnvironmental scienceCRITICAL IMPELLER SPEED0210 nano-technologyIndustrial & Engineering Chemistry Research
researchProduct

Free-surface shape in unbaffled stirred vessels: Experimental study via digital image analysis

2013

There is a growing interest in using unbaffled stirred tanks for addressing a number of processing needs such as low shear damage (sensitive biocultures), low attrition (solid–liquid applications), deep-cleaning/sterilization (pharmaceutical applications). The main feature of uncovered, unbaffled stirred tanks is highly swirling motion of the fluid that results in a deformation of the free liquid surface. At sufficiently high agitation speeds the resulting whirlpool reaches the impeller and gives rise to a gas–liquid dispersion, so leading to the formation of a dispersion without the use of gas-sparger; the so-called self-inducing operation of the vessel. In this work, digital image analysi…

Engineeringbusiness.industryApplied MathematicsGeneral Chemical EngineeringMixing Unbaffled vessels Image analysis Free-surfaceshapeSettore ING-IND/25 - Impianti ChimiciMIXINGGeneral ChemistryMechanicsStructural engineeringFree-surface shapeShadowgraphyTurbineSlip factorMixing; Unbaed Vessels; Image Analysis; free-surface shape.Industrial and Manufacturing EngineeringAgitatorRushton turbineImpellerFree surfaceDigital image analysisUNBAFFLED STIRRED VESSELSIMAGE ANALYSISbusinessUnbaed Vessels
researchProduct

Residence time distribution of solid particles in a continuous, high-aspect-ratio multiple-impeller stirred vessel

2004

Abstract In this paper experimental information on the retention time distribution (RTD) of solid particles in a high-aspect-ratio vessel, stirred by three equally spaced Rushton turbines, is presented. The relevant data were obtained by a special technique named twin system approach (TSA) that greatly simplifies the handling of particle-laden streams and is therefore particularly suited for investigating particle RTD in flow systems. The technique fundamentals are first summarized, together with the data analysis procedure. This lastly requires a numerical deconvolution operation that is easily performed with the help of Z -transforms. Two different approaches for excluding the spurious co…

EngineeringPipingbusiness.industryApplied MathematicsGeneral Chemical EngineeringSettore ING-IND/25 - Impianti ChimiciFlow modelGeneral ChemistryMechanicsResidence time distributionMultiple-impellerIndustrial and Manufacturing EngineeringParticle tracingImpellerTwin systems approachParticle RTDCascadeParticle tracking velocimetryRetention time distributionParticleStirred vesselDeconvolutionbusinessSimulationBackflow
researchProduct

POWER CONSUMPTION IN UNBAFFLED TANKS: SUB AND SUPER-CRITICAL REGIMES

2013

Unbaffled stirred tanks are increasingly recognized as a viable alternative to common baffled tanks for a range of processes (e.g. crystallization, food and pharmaceutical processes, etc) where the presence of baffles is undesirable for some reason. Also, in the case of bioreactors for animal cell cultivation, where cell damage is mainly related to bubbles bursts at the air –liquid interface, unbaffled tanks have been shown to be able to provide sufficient mass transfer through the free surface vortex. As a consequence bubble formation and subsequent bursting is conveniently avoided (Scargiali et al., 2012). The same feature clearly makes unbaffled vessels potentially advantageous for any f…

Settore ING-IND/25 - Impianti Chimicimixing unbaffled stirred vessels power number
researchProduct

Mass transfer and hydrodinamic characteristics of a high aspect ratio self-ingesting reactor for gas-liquid operations

2007

Abstract The mass transfer performance of a gas–liquid self-ingesting stirred reactor is reported both for coalescing and non-coalescing systems. The vessel features are a high aspect ratio and a rather narrow multiple-impeller draft tube, through which the gas phase is ingested and led down to the vessel bottom, where it is finely dispersed into the liquid rising in the annular portion of the vessel. Comparison is made between k L a values determined by several variants of the dynamic method, among which pure oxygen absorption in a previously de-gassed liquid phase. Results show that the gas–liquid mass transfer coefficient values obtained with the last approach are remarkably larger than …

Mass transfer coefficientstirred vesselChromatographyChemistryApplied MathematicsGeneral Chemical EngineeringContinuous stirred-tank reactormass transfer coefficientself inducingGeneral ChemistryMechanicsdynamic techniqueAspect ratio (image)Industrial and Manufacturing EngineeringAgitatorDraft tubeMass transferAbsorption (chemistry)k(L)agas-liquid reactorContactor
researchProduct

Vortex shape in unbaffled stirred vessels: experimental study via digital image analysis

2011

There is a growing interest in using unbaffled stirred tanks for addressing certain processing needs. In this work, digital image analysis coupled with a suitable shadowgraphy-based technique is used to investigate the shape of the free-surface vortex that forms in uncovered unbaffled stirred tanks. The technique is based on back-lighting the vessel and suitably averaging vortex shape over time. Impeller clearance from vessel bottom and tank filling level are varied to investigate their influence on vortex shape. A correlation is finally proposed to fully describe vortex shape also when the vortex encompasses the impeller.

lcsh:Computer engineering. Computer hardwareSettore ING-IND/25 - Impianti Chimicidigital image analysilcsh:TP155-156bioreactorslcsh:TK7885-7895surface vortexComputingMethodologies_DOCUMENTANDTEXTPROCESSINGunbuffled stirred vesselUNBAFFLED STIRRED VESSELSlcsh:Chemical engineeringunbuffled stirred vessels; surface vortex; bioreactorsFree-surface vorticeComputingMilieux_MISCELLANEOUSComputingMethodologies_COMPUTERGRAPHICS
researchProduct